O MODELO SWAT COMO FERRAMENTA PARA A GESTÃO DE RECURSOS HÍDRICOS: avaliação de vazões de outorga na bacia hidrográfica do Altíssimo Rio Negro

Rodrigo Marcos de Souza¹; Irani dos Santos²; Masato Kobiyama³

RESUMO - O presente trabalho apresenta a aplicação do modelo SWAT (*Soil & Water Assessment Tool*) como ferramenta na concessão de outorgas de direito de uso dos recursos hídricos, na bacia hidrográfica do Altíssimo Rio Negro. A bacia (787,8 km²) está localizada ao norte do estado de Santa Catarina e ao sul do estado do Paraná, entre as latitudes 25°55'73''S e 26°14'17"S; e entre as longitudes 48°56'34"W e 49°23'12"W. A região é caracterizada pela Floresta Ombrófila Mista, pelo reflorestamento de pinus, e pelas atividades agro-pastoris. O SWAT é um modelo matemático de domínio público desenvolvido a partir de 1996 nos EUA pelo *Agricultural Research Service e pela Texas A&M University* e incorpora grande parte dos avanços obtidos em modelos anteriores. Os resultados indicam grande variação espacial das vazões simuladas, notadamente para as vazões mínimas e nas sub-bacias com área de drenagem inferior a 100 km². Como geralmente estas bacias pequenas não são monitoradas, a modelagem torna-se uma ferramenta útil na gestão de recursos hídricos.

ABSTRACT - This work presents the model SWAT (Soil & Water Assessment Tool) application as a tool in the granting of award for water resources use in the Upper Negro River watershed. This watershed (787,8 km²) is located in the north of the Santa Catarina state and in the south of the Paraná state, between latitudes 25°55′73′′S and 26°14′17″S; and between longitudes 48°56′34″W and 49°23′12″W. The region is characterized with the Subtropical Rain Forest, pine reforestation, and the agriculture-pastoral activities. The SWAT which is publicly available is a mathematical model developed in 1996 in the USA by Agricultural Research Service and by the Texas A&M University and incorporates large part of the advances obtained in previous models. The results indicate large spatial variation of the simulated discharges, especially for minimum discharges and in sub-watersheds with drainage area less than 100 km². Since these small watersheds are not usually monitored, the modeling becomes a useful tool in the water resources management.

Palavras-chave: SWAT, gestão de recursos hídricos, vazão mínima.

Bolsista CNPq, Mestrando em Geografia da Universidade Federal do Paraná. Rua Dr. Euzébio de Oliveira, 432, 81.570-140 Curitiba

 PR. E-mail: marcos@globo.com

Bolsista CNPq, Professor do curso de Geografia da Universidade Federal do Paraná. Centro Politécnico da UFPR, 81531-990, Cx Postal 19001 Curitiba – PR. E-mail: irani@ufpr.br

Bolsista CNPq, Professor do curso de Engenharia Ambiental e Sanitária da Universidade Federal de Santa Catarina. Campus Universitário Trindade, 88040-900, Cx. Postal 476 – Florianópolis – SC. E-mail: kobiyama@ens.ufsc.br

INTRODUÇÃO

A existência da vida no planeta Terra só é possível graças à disponibilidade de água. O ser humano, desde os primórdios, mantém estreita relação com este recurso natural, como as civilizações antigas que se instalaram em áreas onde o acesso à água era possível. As sociedades humanas, apesar da dependência de água para a sua sobrevivência e desenvolvimento, poluem e degradam este e outros recursos naturais.

Desta forma, a problemática da degradação ambiental tornou-se um assunto frequente desde a década de 80. A forma de relação predatória com a qual o homem se relacionou com a natureza resultou em impactos negativos sobre os sistemas naturais, sendo a água o que sofre a maior pressão. Santos (2001) cita que as distribuições espaciais e temporais dos recursos hídricos bacia vêm se tornando mais heterogênea devido à ação antrópica intensa e sem planejamento, esta última resultando em uma degradação dos sistemas naturais e da própria sociedade.

Para amenizar estes problemas e garantir o acesso à água para todos, a gestão de recursos hídricos surge como a política para alcançar tal objetivo, tendo a outorga como um dos instrumentos.

Mas para a realização de um adequado gerenciamento da bacia hidrográfica, necessita-se de várias informações. Segundo Machado (2002), uma investigação no sistema real, envolvendo medições de todas as variáveis que influenciam a dinâmica de uma bacia hidrográfica é uma tarefa árdua, sendo até mesmo impossível em determinadas vezes, pois o longo prazo exigido e os custos de medições e monitoramento são grandes empecilhos para tal tarefa.

Desta forma, a modelagem surge com alternativa para a obtenção de informações sobre a dinâmica de uma bacia hidrográfica.

ÁREA DE ESTUDO

Neste trabalho, definiu-se a área a montante da estação hidrossedimentológica de fragosos como sendo a bacia hidrográfica do Altíssimo Rio Negro. A referida bacia está localizada na divisa dos estados do Paraná e de Santa Catarina, entre as coordenadas, entre as latitudes 25°55'73''S e 26°14'17"S; e entre as longitudes 48°56'34"W e 49°23'12"W, conforme mostra a figura 1.

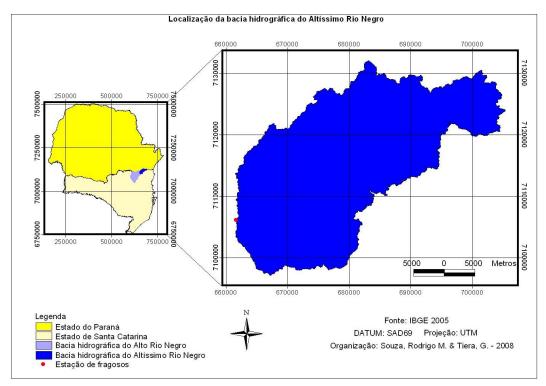


Figura 1 – Localização da bacia hidrográfica do altíssimo rio negro

O clima na área de estudo é classificado como subtropical úmido. A média pluviométrica é alta, com aproximadamente 1.500 mm./ano, não havendo estação seca bem definida.

O uso do solo foi determinado com base em uma imagem do satélite LandSat, sensor TM-5, com órbitas /ponto 220/79, 220/78 e 221/78, com data de julho de 2007. As bandas utilizadas para a classificação automática, realizada pelo LABHIDRO/UFSC, foram a 1, 2, 3, 4, 5 e 7. A Floresta Ombrófila Mista ainda recobre 38% da área. As pastagens ou campos recobrem 28%, a agricultura, seja com cultivo ou solo exposto, recobre 24%, o reflorestamento de Pinus tem uma área de 9%, sendo que os corpos hídricos ocupam menos de 1% da área.

Com relação aos solos da bacia em estudo, o mapa foi elaborado com base em Marangon (2008). Os solos da área de estudo estão distribuídos da seguinte forma: em 44% da área encontrase o solo do tipo Cambissolo, em 22% Nitossolo, em 13% Argissolo vermelho-amarelo, em 11% Neossolo litólico, em 8% Gleissolo e em 2% Latossolo.

MODELO SWAT

O modelo SOIL AND WATER ASSESSMENT TOOL – SWAT é um modelo matemático de domínio público, desenvolvido em 1996 nos EUA pelo *Agricultural Research Service* e pela *Texas*

A&M University. A versão utilizada neste trabalho é a 2.1.4, a qual é uma interface para o Software ArcGis 9.2.

O SWAT, em seu desenvolvimento, foi incorporando várias características contidas em modelos anteriores. O modelo tem por objetivo prever o efeito das ações de uso e manejo do solo sobre os recursos hídricos, produção de sedimentos, produção de nutrientes e pesticidas, sendo aplicado em pequenas e grandes bacias. A modelagem pode ser efetuada em intervalos de tempo diários, mensais e anuais.

Conforme Santos et al. (2005), as características principais do SWAT são:

- é um modelo que possui base física, com equações que descrevem a relação entre as variáveis do sistema. Requer como *inputs* informações sobre clima, solos, relevo, vegetação e uso e manejo do solo. Através destas informações, o SWAT modela os processos físicos associados com o movimento da água, movimento de sedimentos, crescimento da vegetação, ciclagem de nutrientes, qualidade da água, etc.
- é distribuído, onde a bacia hidrográfica pode ser subdividida em sub-bacias de modo a refletir as diferenças de tipo de solo, cobertura vegetal, topografia e uso do solo;
- para as funções mais básicas, o modelo utiliza informações de fácil acesso, disponíveis em agências governamentais;
- permite simular longos períodos de forma contínua, o que permite perceber impactos ambientais que só são visíveis quando avaliados por um longo período de tempo;
- é computacionalmente eficiente.

A figura 2 representa sinteticamente os processos representados pelo modelo SWAT. Como este trabalho é direcionado a modelagem da vazão, os demais componentes do modelo não são apresentados.



Figura 2 – Fluxograma do modelo SWAT (fonte: modificado de King *et al.*, 1996)

De acordo com Gassman *et al.* (2007), o modelo SWAT vem sendo utilizado de forma corrente após o seu desenvolvimento. Muitas aplicações foram exercidas por agências governamentais, principalmente na Europa e nos Estados Unidos, para avaliar mudanças climáticas,

efeitos do uso do solo sobre os recursos hídricos e avaliação da capacidade do modelo para futuras aplicações.

No Brasil, Machado (2002) aplicou o modelo para simular o escoamento e a produção de sedimentos em uma microbacia hidrográfica. Baldissera (2005) aplicou o modelo para simular as vazões líquidas mensais na Bacia do Rio Cuiabá. Algumas instituições públicas e privadas também fazem uso do modelo para predizer problemas relacionados à erosão e assoreamento, principalmente as empresas de geração de energia elétrica, conforme Santos *et al.* (2005)

Dados de entrada do modelo

Para a simulação, o modelo requer informações espaciais, como o modelo digital do terreno, hidrografia, mapa de solos, mapa de uso do solo e de séries temporais de precipitação, vazão líquida, descarga sólida, temperatura mínima e máxima, radiação solar, umidade relativa e velocidade do vento.

Com relação aos solos, o modelo requer um banco de dados com diversas informações, como o número de camadas do solo, grupo hidrológico, e informações por camada de solo, como capacidade de água disponível, condutividade hidráulica saturada, porosidade, entre outras informações. O modelo utiliza também um banco de dados relativos ao uso do solo.

RESULTADOS

Conforme mostra a figura 3, a bacia hidrográfica do Altíssimo Rio Negro foi dividida em 47 sub-bacias, sendo eliminadas sub-bacias de cabeceira com pequenas áreas de drenagem. Esta mesma figura apresenta dentro de cada sub-bacia o seu número de identificação e entre parênteses as sub-bacias contribuidoras.

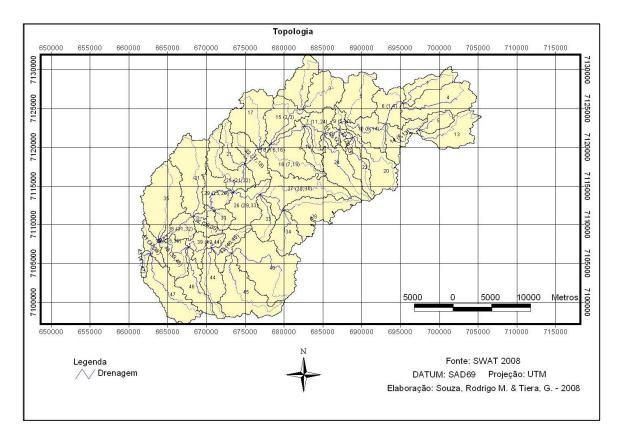


Figura 3 – Topologia das sub-bacias utilizadas na simulação

A calibração foi realizada de forma manual, com os valores dos parâmetros atribuídos para todos os Hru's e sub-bacias. Os parâmetros calibrados e seus respectivos valores constam da tabela 1.

Tabela 1 – parâmetros, descrição e valores atribuídos na simulação

Parâmetro	Descrição	Valor atribuído
Alpha Bf	Constante de recessão do escoamento de base	0.85
Canmx	Interceptação máxima da vegetação	9.85
CN2	curva número na condição de solo úmido	1
Esco	coeficiente de compensação da evaporação do solo	0.1
Gwqmn	Profundidade de água subterrânea requerida para que ocorra o retorno de fluxo	990
Gwdelay	Tempo de recarga do aqüífero, em dias	90
Slope	Declividade	0.6
Sol Awc	Controla a quantidade de água disponível nas camadas de solo	0.58
Sol K	Condutividade hidráulica	25

A simulação foi realizada entre os anos de 1994 a 1998. A análise estatística se deu através do coeficiente de Nash-Sutcliffe (1970), o qual é definido por:

$$NASH = 1 - \frac{\sum (Qsim - Qobs)^2}{\sum (Qobs - \overline{Qobs})^2}$$
 (1)

onde Qsim é a vazão simulada, Qobs é a vazão observada e \overline{Qobs} é a média da vazão observada.

O coeficiente de Nash-Sutcliffe obtido foi de valor de 0,72. A vazão média observada no período de 1994 a 1998 foi de 25.39 m³/s, enquanto a vazão média simulada foi de 29.03 m³/s. A figura 4 compara as séries de vazões observadas e simuladas

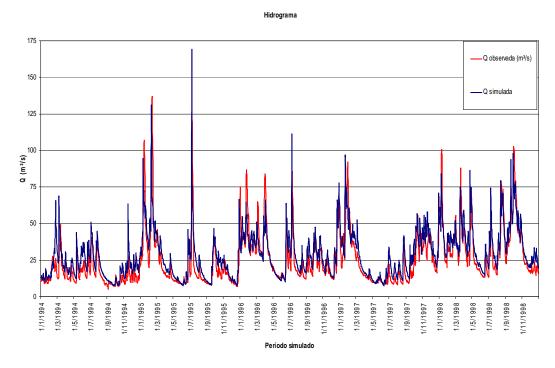


Figura 4 – Hidrograma comparativo das vazões simuladas e observadas

Conforme pode-se observar no hidrograma, o modelo representou adequadamente o comportamento das vazões observadas, com algumas limitações para simular picos e recessões.

A concessão de outorgas no Estado do Paraná é realizada com base na vazão de referência Q95, ou seja, a vazão de permanência em 95% do tempo, sendo outorgada para uso ou consumo dos solicitantes o máximo de 50 % desta vazão. O método para estipular a vazão em locais sem medição é a regionalização através da transferência de dados medidos de uma estação para locais semelhantes. No Estado de Santa Catarina, a vazão de referência é a Q98, sendo outorgado aos solicitantes 50% desta vazão. A figura 5 mostra as curvas de permanência das sub-bacias com a menor (sub-bacia 13) e a maior (sub-bacia 44) vazão mínima, juntamente com a curva de

permanência do exutório da bacia hidrográfica do Altíssimo Rio Negro. Nota-se que existe uma considerável diferença para as vazões mínimas do exutório e as curvas das sub-bacias 13 e 44. Esta diferença, na concessão de outorgas, aparece como um problema, pois ao considerar somente a vazão da bacia no ponto de medição localizado no exutório como referência, a concessão pode estar superestimando o real valor da vazão em determinado ponto da bacia.

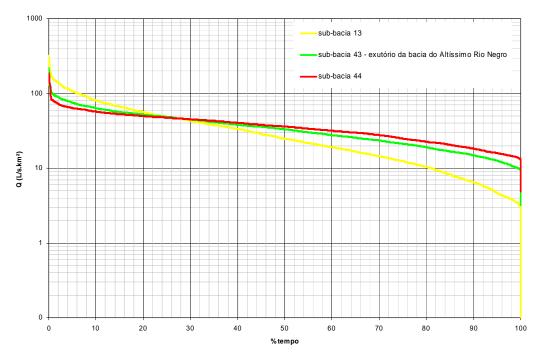
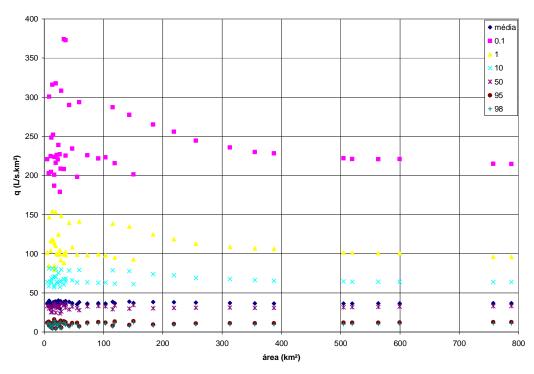
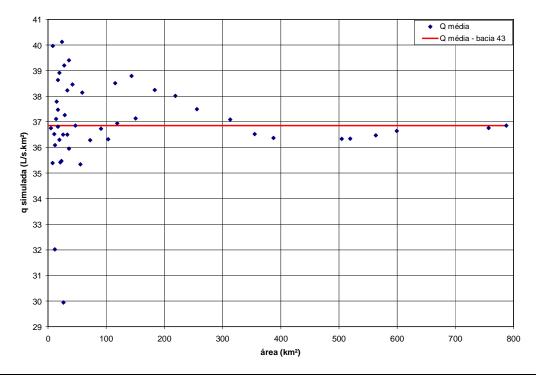
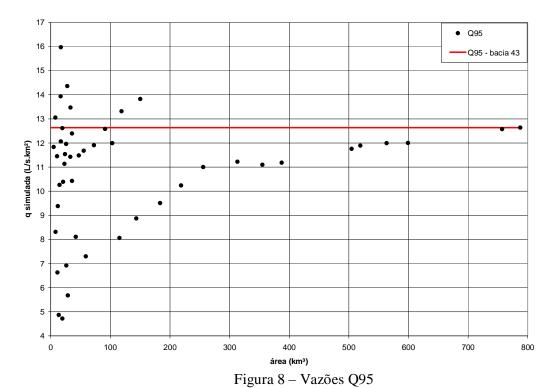


Figura 5 – Curvas de permanências em diferentes sub-bacias

A figura 6 mostra os valores das vazões em cada sub-bacia, com tempo de permanência de 0,1, 1, 10, 50, 95, 98, além da vazão média obtida através da simulação. Todas as referidas vazões estão relacionadas à sua área de contribuição. Na figura, verificamos que a vazão média é superior a vazão Q50. Explica-se este fato pelo alto valor das vazões máximas, o que propicia um deslocamento da média em direção a estes valores. Outra consideração é que determinadas permanências apresentam uma variação considerável devido à área de drenagem, ou seja, o efeito de escala se faz presente na produção de água.


Figura 6 – Relação entre vazões específicas e área de drenagem

A figura 7 apresenta a variação da média das vazões para cada sub-bacias. A análise da figura permite concluir que a variação da média é considerável, com a sub-bacia 17 apresentado a menor média, com o valor de 29,94 L/s.km², com a sub-bacia 5 apresentado a maior média, com o valor de 40,12 L/s.km².

Figura 7 – média das vazões para cada sub-bacia

A figura 8 apresenta as vazões Q95 de cada sub-bacia com relação à área de contribuição. Analisando a figura, verificamos que para uma mesma área de drenagem, temos valores de vazão bem distintos. Desta forma, a outorga concedida com a vazão de referência Q95, considerando somente a bacia 43, assumiria o valor de 12.63 L/s.km². sendo outorgada 6.31 L/s.km². Conforme demonstra a figura 8, esta concessão estaria generalizando o regime hídrico da bacia, não considerando as diferentes vazões das sub-bacias. O problema torna-se maior se algum solicitante estivesse dentro da área da sub-bacia 13, que na simulação apresentou uma vazão de 4,71 L/s.km², ou seja, a outorga estaria concedendo um volume de água que a sub-bacia 13 é incapaz de produzir. Em outras sub-bacias o problema se repete, sendo outorgados volumes maiores do que a produção.

Em relação à outorga concedida com a vazão de referência Q98, o problema da concessão efetuada tendo como referência os valores de vazão somente da bacia 43 se repete, conforme demonstra a figura 9.

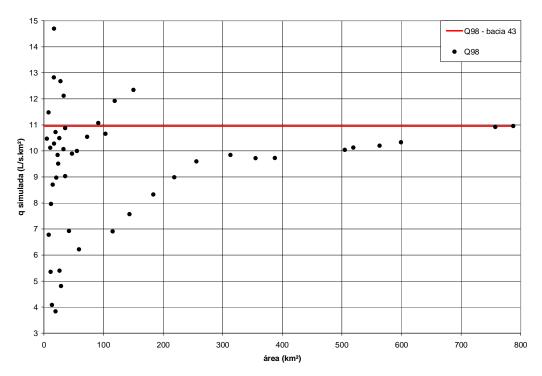


Figura 9 – Vazões Q98

CONCLUSÃO

A gestão de recursos hídricos é um campo de ação multidisciplinar. Face o considerável rol de alternativas existentes no planejamento de recursos hídricos, torna-se necessário utilizar metodologias que melhor quantifiquem os processos, possibilitando analisar as alternativas que auxiliem na tomada de decisões. Assim, os modelos são utilizados na gestão de recursos hídricos e chamam-nos a atenção os modelos de planejamento. Segundo Tucci (1998) estes modelos simulam condições globais de um sistema maior, como uma bacia hidrográfica. Este tipo de modelo, além das soluções hidráulicas, hidrológicas e econômicas, trabalha com questões socioeconômicas e ambientais.

A situação atual exige uma utilização racional dos recursos naturais. Neste panorama, os modelos hidrológicos têm sido utilizados para representar processos e buscar prognosticar as condições que o meio estará sujeito, sendo assim possível a adoção de medidas para amenização dos impactos.

Dessa forma, o modelo SWAT aparece como uma excelente ferramenta para a concessão de outorgas de direito de uso dos recursos hídricos. Conforme mostrou a pesquisa, as vazões Q95, Q98 e média, não apresentam um comportamento linear em relação à área de drenagem das bacias. Este

fato não permite que a simples transferência de vazão por área de drenagem possa ser uma forma adequada para a concessão de outorgas. Destaque-se que para sub-bacias com áreas de drenagem inferiores a 100 km², há uma maior variação dos valores de vazão.

Assim, dado que o modelo permite um ajuste satisfatório nos pontos de monitoramento, a sua característica de modelo distribuído permite ao órgão responsável pela concessão da outorga ter em seu poder o comportamento das vazões em diversos pontos da bacia, possibilitando assim uma concessão embasada em dados mais precisos.

AGRADECIMENTOS

Agradecemos ao Consenho Nacional de Pesquisa (CNPq) e Financiadora de Estudos e Projetos (FINEP) pelo apoio financeiro, com recursos do Fundo Nacional de Recursos Hídricos (CT-Hidro).

BIBLIOGRAFIA

BALDISSERA, GISELE C. (2005) Aplicabilidade do modelo de simulação hidrológica SWAT (Soil and Water Assessment Tool), para a bacia hidrográfica do Rio Cuiabá/MT. Cuiabá - MT. Dissertação (mestrado em Física e Meio Ambiente). Universidade Federal do Mato Grosso.

GASSMAN *et al.* (2007). The soil and water assessment tool: historical development, applications, and future research directions. Disponível em http://www.card.iastate.edu/publications/DBS/PDFFiles/07wp443.pdf

KING, K. W.; ARNOLD J. G.; WILLIAMS, J. R.; SCRINIVASAN R. (1996). *Soil and Water Assessment Tool–SWAT*. USDA, Agricultural Research Service. 450p.

MACHADO, RONALTON E. (2002). Simulação de escoamento e de produção de sedimentos em uma bacia hidrográfica utilizando técnicas de modelagem e geoprocessamento. Piracicaba - SP, 152 p. Tese (Doutorado em Agronomia) – Escola Superior de Agronomia "Luiz de Queiroz", Universidade de São Paulo.

MARANGON F. H. S. (2008). Relatório final do bolsista Fernando Helmuth Syring Marangon vinculado ao projeto monitoramento e modelagem hidrossedimentológica da bacia hidrográfica do Alto Rio Negro, região sul-brasileira (MCT/FINEP/CT-HIDRO bacias representativas – 01.06.0367.00 Ref. 3498/05), 21 p.

NASH J.E., SUTCLIFFE J.E.. (1970). River flow forecasting through conceptual models. Part I—A discussion of principles. *Journal of Hydrology* 290p.

SANTOS, IRANI DOS (2001). Modelagem geobiohidrológica como ferramenta no planejamento ambiental: estudo da bacia hidrográfica do rio pequeno, São José dos Pinhais – Pr. Curitiba - PR, 93 p. Dissertação (Mestrado em Agronomia) – Setor de Ciências Agrárias, Universidade Federal do Paraná.

SANTOS, IRANI DOS, et al. (2005). Desenvolvimento de modelo de avaliação da qualidade de água e transporte de sedimentos para pequenas e médias centrais elétricas: modelagem da erosão e

transporte de sedimentos. Instituto de Tecnologia para o Desenvolvimento (LACTEC). Curitiba – PR, 91 p.

TUCCI, CARLOS E M (1998). Modelos Hidrológicos. Editora da Universidade/UFRGS Porto Alegre – RS, 678 p.